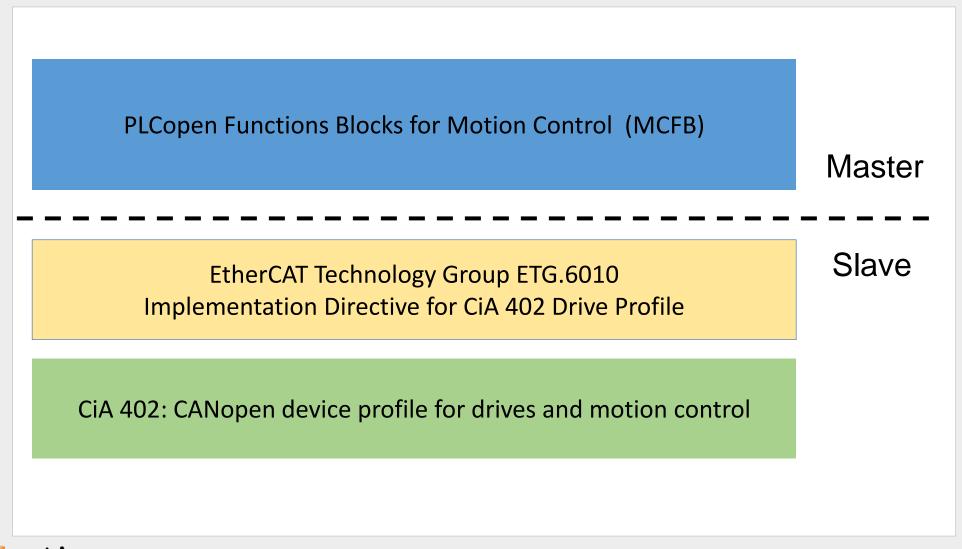
EC Motion

Motion Control Library in "C++"

Controlling Drives based on CiA 402 or SERCOS device profile

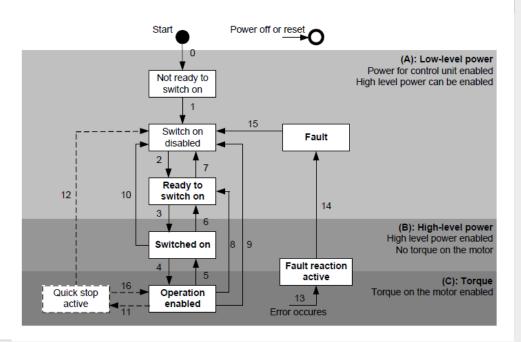
Content

- Introduction to PLCopen and CiA 402
- EC-Motion Library Architecture
- Administrative Functions Blocks
- Single Axis Motion Functions Blocks
- Camming Function Blocks
- Examples
- Highlights


Introduction

- Most available drives with EtherCAT slave interface are based on the CiA 402 standard, e. g., Yaskawa, Copley, Omron, ...
- CiA 402 organizes parameters in a so called object dictionary and a drive state machine
- Based on this definitions it shall be possible to run drives from different manufacturers with the same application
- EtherCAT Technology Group (ETG) document
 <u>ETG6010 V1i0i0 D R CiA402 ImplDirective</u> gives additional implementation hints for using CiA 402 with EtherCAT
- The organization PLCopen has defined Functions Blocks for Motion Control to simplify usage of motion functions within a PLC program

Introduction Standards



EC *Motion*

Introduction CANopen device profile for drives and motion control

CiA 402: CANopen device profile for drives and motion control

- CiA 402 organizes parameters in a so called object dictionary. Each parameter has a defined number (index + subindex) and meaning
 - Object 0x6040: Control Word
 - Object 0x6041: Status Word
 - Object 0x607A: Target Position
 - Object 0x6064: Actual Position
 - • • •
- CiA 402 drive state machine

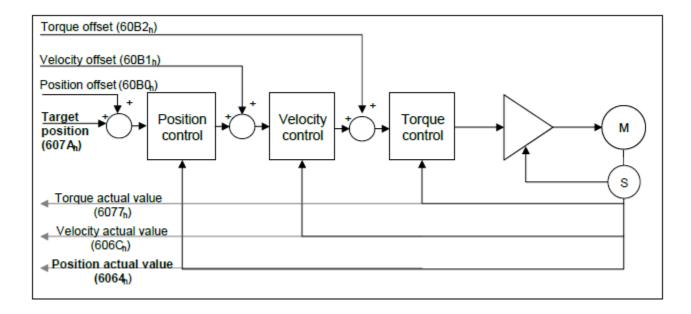
EC *Motion*

Introduction ETG Implementation Directive for CiA 402 Drive Profile

ETG Implementation Directive for CiA 402 Drive Profile

 The drive has to support at least on of the cyclic operation modes: CSP or CSV or CST

Mode of operation	Abbr.	Code	Category	Remarks
Profile position mode	рр	1	0	
Velocity mode (frequency converter)	vl	2	0	
Profile velocity mode	pv	3	0	
Torque profile mode	tq	4	0	
Homing mode	hm	6	0	
Interpolated position mode	ip	7	0	
Cyclic synchronous position mode	csp	8	С	at least one of
Cyclic synchronous velocity mode	CSV	9	С	these modes
Cyclic synchronous torque mode	cst	10	с	shall be supported
Cyclic synchronous torque mode with commutation angle	cstca	11	0	
Manufacturer specific mode		-1281	0	



EC *Motion*

ETG Implementation Directive for CiA 402 Drive Profile

CSP: Cyclic Synchronous Position Mode

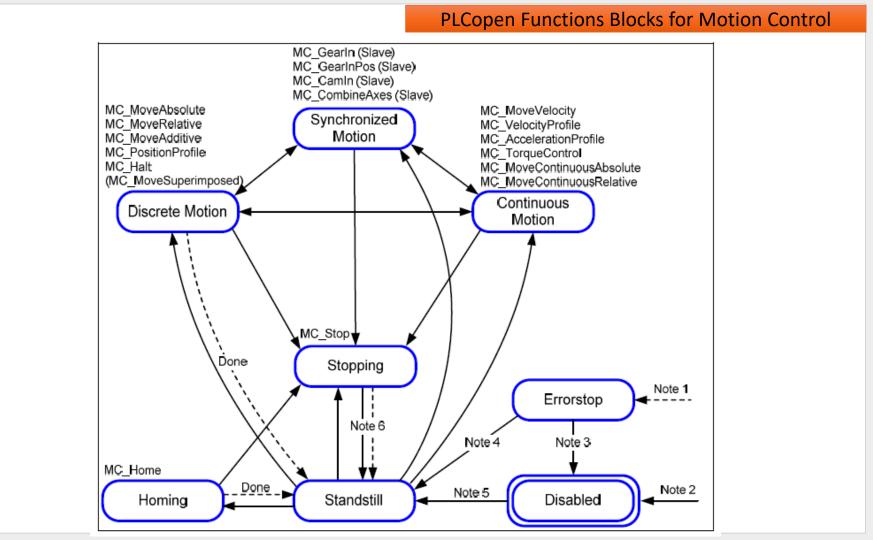
- Application has to set a new "Target position" in every cycle (trajectory generator)
- Position, Velocity and Torque are controlled by the drive

Introduction PLCopen

PLCopen Functions Blocks for Motion Control

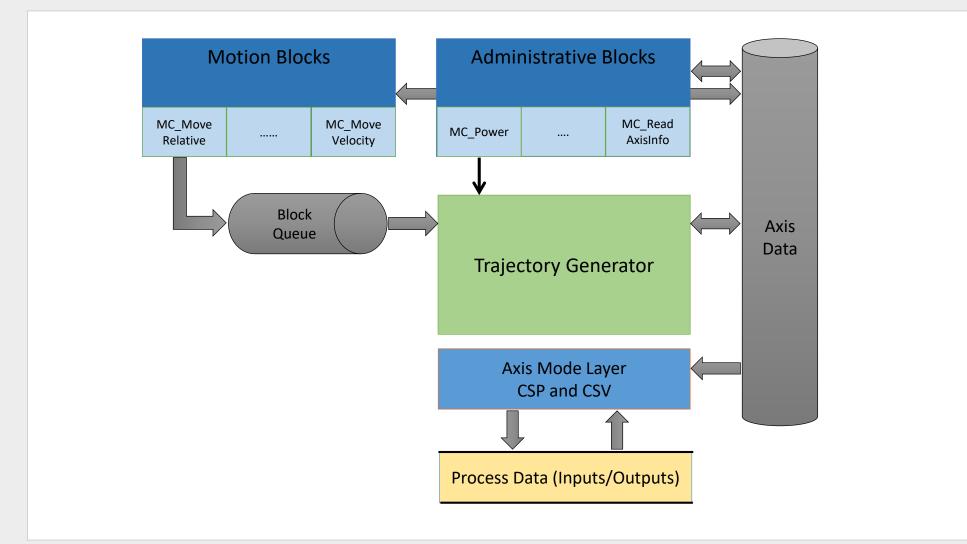
• **PLCopen**, as an organization active in Industrial Control, is creating a higher efficiency in your application software development and lowering your life-cycle costs. As such it is based on standard available tools to which extensions are and will be defined. With results like Motion Control Library, Safety, XML specification, Reusability Level and Conformity Level, PLCopen made solid contributions to the community, extending the hardware independence from the software code, as well as reusability of the code and coupling to external software tools.

http://www.plcopen.org/


PLCopen Motion Control Specifications
 PLCopen motion standard provide a way to have
 standard application libraries that are reusable
 for multiple hardware platforms.

Part 1 and 2: Function blocks for motion control V2.0 http://www.plcopen.org/pages/tc2_motion_control/

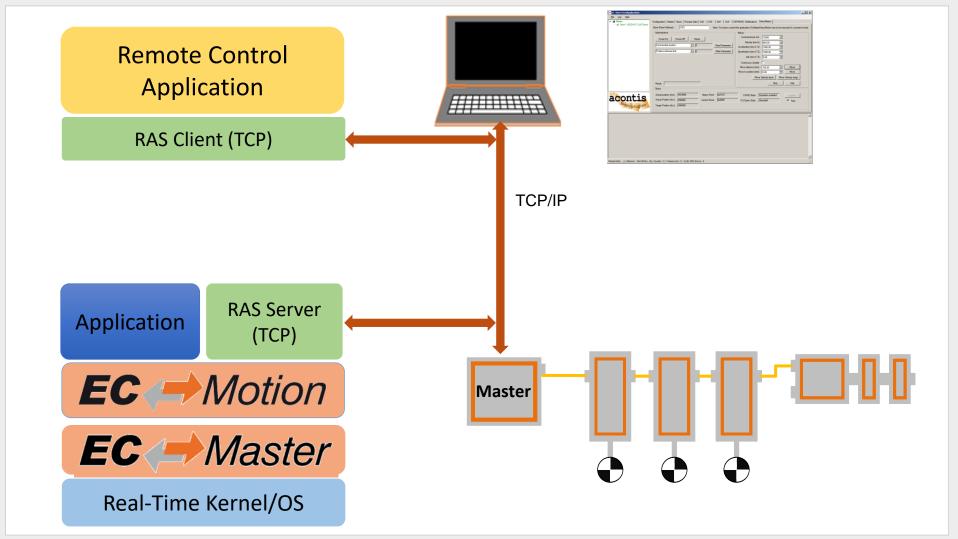
Introduction PLCopen: Motion state machine



9

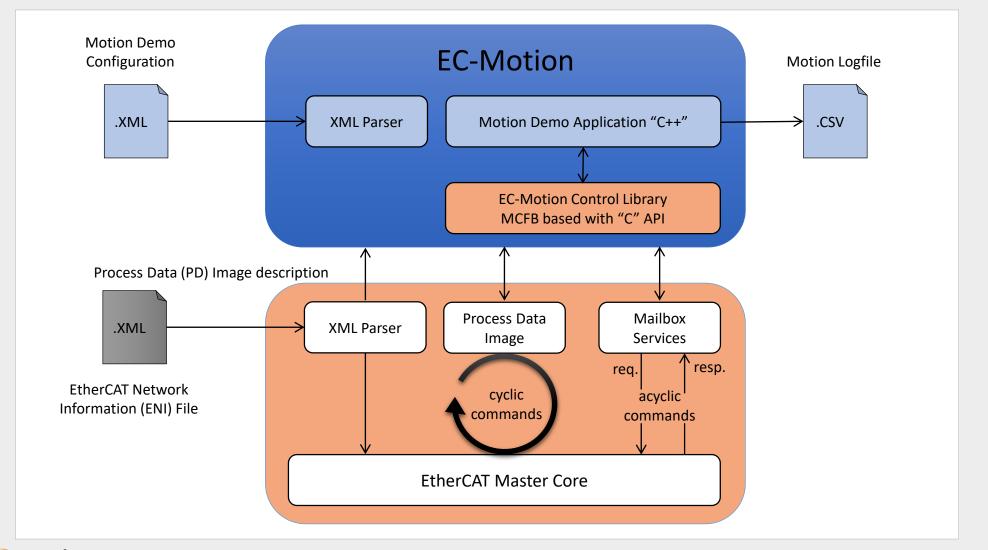
EC-Motion Control Library Architecture

EC-Motion Product Overview



- EC-Motion is a motion control solution for drives operating in a cyclic mode (CSP or CSV). The heart of EC-Motion is a C++ class library that implements the PLCopen "Function blocks for motion control" specification in version 2.0.
- EC-Motion is targeted to work in conjunction with the EC-Master (EtherCAT Master Stack). But EC-Master is not mandatory. Simulation only mode is supported as well.
- EC-Motion provides a Programmable Logic Controller (PLC) style interface. It is designed to be easy integrating in a PLC for controlling EtherCAT connected servo drives.
- The following EtherCAT drive profiles are supported:
 - CiA® 402: CANopen device profile for drives and motion control
 - SERCOS[®] / Servo over EtherCAT

EC-Motion System Architecture



Software Architecture

Administrative Functions Blocks (1)

- **MC_POWER_T**: This Function Block controls the power stage (On or Off).
- **MC_HOME_T:** This Function Block commands the axis to perform the «search home» sequence.
- **MC_SETPOSITION_T:** This Function Block shifts the coordinate system
- MC_READPARAMETER_T, MC_READBOOLPARAMETER_T: Returns the value of a parameter
- MC_WRITEPARAMETER_T, MC_WRITEBOOLPARAMETER_T: Modifies the value of a parameter
- MC_READDIGITALINPUT_T, MC_READDIGITALOUTPUT_T, MC_WRITEDIGITALOUTPUT_T: Function Block gives access to the value of the input and outputs

Administrative Functions Blocks (2)

- **MC_READACTUALPOSITION_T**: This Function Block returns the actual position.
- **MC_READACTUALVELOCITY_T**: This Function Block returns the actual velocity.
- **MC_READMOTIONSTATE_T**: This Function Block returns the actual velocity.
- **MC_READAXISINFO_T:** This Function Block reads information concerning an axis
- MC_READ_ERROR_T: This Function Block presents general axis errors not relating to the Function Blocks
- MC_RESET_T: This Function Block makes the transition from the state 'ErrorStop' to 'Standstill' by resetting all internal axis-related errors

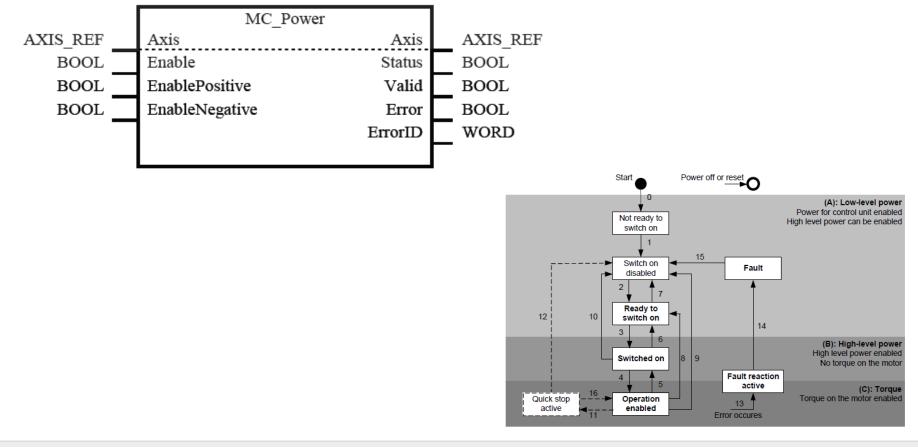
Single Axis Motion Functions Blocks (1)

- **MC_STOP_T**: Commands a controlled motion stop and transfers the axis to the state 'Stopping'.
- **MC_HALT_T**: Commands a controlled motion stop and transfers the axis to the state 'Standstill'.
- **MC_MOVEABSOLUTE_T**: Commands a controlled motion to a specified absolute position.
- **MC_MOVERELATIVE_T**: Commands a controlled motion of a specified distance relative to the set position at the time of the execution.
- **MC_MOVEVELOCITY_T**: Commands a never ending controlled motion at a specified velocity.
- **MC_MOVE_CONT_ABSOLUTE_T**: Commands a controlled motion to a specified absolute position ending with the specified velocity.
- **MC_MOVE_CONT_RELATIVE_T**: Commands a controlled motion of a specified relative distance ending with the specified velocity.
- AMC_CHECK_TARGETPOS_REACHED_T: Check if the actual position has reached the commanded position.

Single Axis Motion Functions Blocks (2)

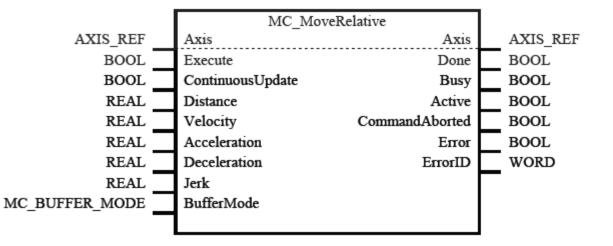
- MC_CalcMoveProfile, MC_CalcMoveProfileBuffered: Calculate move times and segment distances for a specific movement without moving the axis.
- **MC_CalcMoveTimeAtPos**: Calculate time until a certain position is reached. MC
- **MC_DriveSetTargetStep**: Set velocity without using build-in trajectory generator.

Camming Functions Blocks



- With Multi-Axis Function Blocks a synchronized relationship exists between two or more axes. The synchronization can be related to time or position. Often this relationship is between a master axis and one or more slave axes. A master axis can be a virtual axis.
- From the state diagram point of view, the multi-axis Function Blocks related to Camming can be looked at as a master axis in one state (for instance: MC_MOVEVELOCITY_T) and the slave axis in a specific synchronized state, called 'SychronizedMotion'.
- MC_CAMTABLE_SELECT_T: Selects the CAM tables by setting the connections to the relevant tables.
- MC_CAM_IN_T: Engages the CAM.
- MC_CAM_OUT_T : This Function Block disengages the Slave axis from the Master axis immediately. The Slave axis will be stopped if moving.

This Function Block controls the power stage and implements the CiA 402 drive state machine.


Example: MC_Power in "C++" language


```
class MC API MC POWER T : public MC FB T
public:
    // OUT's
                                                /* OUT(B): Effective state of the power stage */
    const MC T BOOL
                        &Status;
    const MC T BOOL
                       &Valid;
                                                 /* OUT(E): If TRUE a valid set of outputs is available */
    // IN's
                                                /* IN(B): As long as is true, power is on */
    MC T BOOL
                        Enable;
                                                /* IN(E): As long as is true, permits motion in pos direction only */
   MC T BOOL
                        EnablePositive;
                                                 /* IN(E): As long as is true, permits motion in neg direction only */
                        EnableNegative;
    MC T BOOL
   void MC THIS API OnCycle();
} MC PACKED;
/* application example */
   MC T AXIS INIT
                            oAxInit;
    MC T AXIS REF
                            *pMcAxis;
    MC POWER T
                            *pMCFBPower;
    /* initialization */
    pMcAxis = new MC T AXIS REF(axInit);
    pMCFBPower = new MC POWER T(pMcAxis);
    /* cyclic part */
    pMCFBPower->Enable = MC TRUE;
    pMCFBPower->pMCFBPower->OnCycle();
```


This Function Block commands a controlled motion of a specified distance relative to the set position at the time of the execution

EC
Motion

Example: MC_MoveRelative in "C++" language

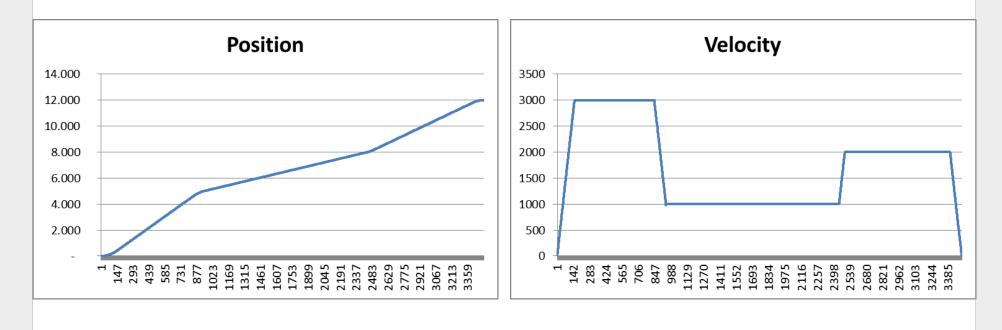
class _MC_API MC_MOVE_RELATIVE_T : public MC_BUFFERED_FB_T

{			
pu	blic:		
	// OUT's		
	const MC_T_BOOL	&Done	/* OUT(B): The axis is within a range close to the target position */
	const MC_T_BOOL	&Busy	/* OUT(E): The FB is not finished and new output values are to be expected */
	// IN's		
	MC T BOOL	Execute;	/* IN(B): Start the motion at rising edge */

110_1_BOOB	Encouce,	, in (2). Scale one motion at fibing cage ,
MC_T_BOOL	ContinuousUpdate;	<pre>/* IN(E): Continuous Update (Trapezoid profile only) */</pre>
MC_T_REAL	Distance;	/* IN(B): Relative distance for the motion $*/$
MC_T_REAL	Velocity;	/* IN(E): Value of the max velocity (always positive, not necessarily reached). */
MC_T_REAL	Acceleration;	/* IN(E): Value of the acc (always positive, increasing energy of the motor). */
MC_T_REAL	Deceleration;	/* IN(E): Value of the dec (always positive, decreasing energy of the motor). */
MC_T_REAL	Jerk;	/* IN(E): Value of the Jerk (always positive). */

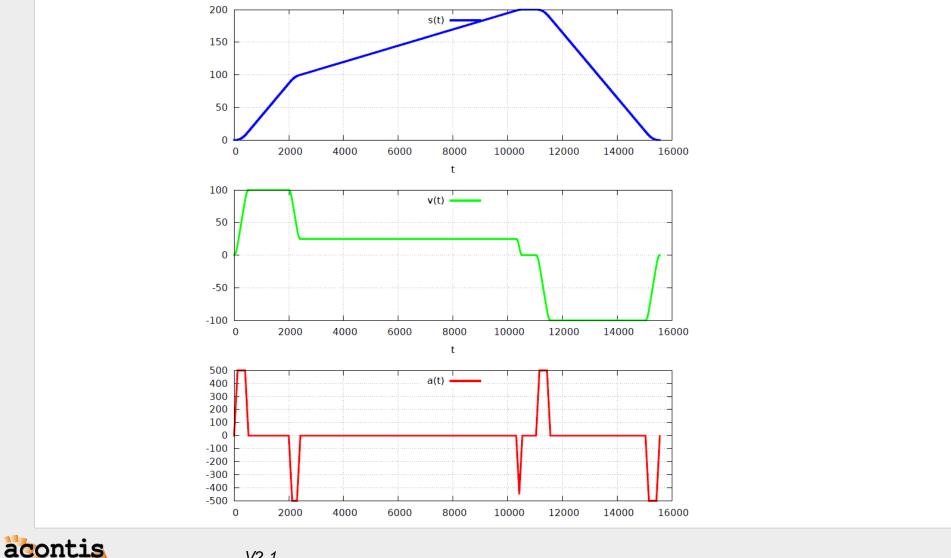
MC_MOVE_RELATIVE_T(MC_T_AXIS_REF *pAxis = MC_NULL);

void _MC_THIS_API OnCycle();


V2.1

Example MC_MoveRelative Buffermode = MC_BLENDING_LOW

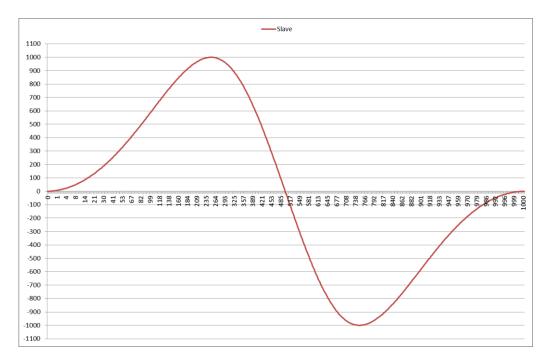
Sequence of three MC_MoveRelative without stop


- FB 1: MC_MoveRelative with Distance=5.0 and Velocity=3000
- FB 1: MC_MoveRelative with Distance=3.0 and Velocity=1000
- FB 1: MC_MoveRelative with Distance=4.0 and Velocity=2000

Drill example – jerk limited

echnologies

V2.1


Camming Example


```
static MC_T_CAM_REF S_myCamTable;
static MC_T_INT S_aCamPointsInt[][2] = \
{{0, 0}, {125,707}, {250,1000}, {375,707}, \
{500,0}, {625,-707}, {750,-1000}, {875,-707}, {1000,0}};
S_myCamTable.eInterpolType = MC_CAM_INTERPOL_TYPE_CUB;
S_myCamTable.nNumOfElements = sizeof(S_aCamPointsInt)/2/sizeof(MC_T_INT);
```

S_myCamTable.eVarType = MC_CAM_VAR_TYPE_INT;

S_myCamTable.pData = S_aCamPointsInt;

Remote Control with EC-STA DemoMotion tab to command functions

Ele Log Heb B Master Drive 1 (SGDV-E1 CoE Drive) Administrative Power-On Power-Off Reset Commanded position Positive software limit 0 Write Parameter Jerk [mm/s^3]: Jerk [mm/s^3]: 0,00 Jerk [mm/s^3]: 0,00 Move
Drive 1 (SGDV-E1 CoE Drive) Slave (Fixed Address): 1001 Note: For motion control the application EcMasterDemoMotion has to be executed in command mode Administrative Power-On Power-Off Reset Commanded position 10 Read Parameter Positive software limit 0 Write Parameter Jerk [mm/s^3]: 1000 Continuous Update:
Move to position [mm]: 0.00 Move Move Velocity (pos) Move Velocity (neg)
Result: Stop Halt Status Actual position [mm]: 99,9999 Status Word : Dx1637 DS402 State : Operation enabled Update Actual Position [Inc]: 999999 Control Word : Dx000F PLCOpen State : Standstill Image: Auto

Highlights

- CiA402 and SERCOS Profile
- Independent from communication layer (EtherCAT, CAN)
- Jerk limited movements
- Changing parameters during movement (continuous update)
- Software limits
- Buffer modes (buffered, blending)
- Operating modes
 - Cyclic Synchronous Position (CSP)
 - Cyclic Synchronous Velocity (CSV)
 - Profile Position (PP)
- Virtual axis
- Efficient implementation \rightarrow Low CPU load
- According to PLCopen Standard V2.0
- Library includes source code

